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Executive Summary 

The WP1 Trial Results is WP1’s seventh deliverable in the FINESCE project. The purpose of 
this deliverable is amongst other to describe and report WP1’s final trial results within the 
FINESCE project. 
 
The deliverable is split into the following results sections: usage of Generic Enablers and 
FIWARE, Energy optimization, Simulations, and Other. 
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1. Introduction 

The purpose of this deliverable is amongst other to describe and report WP1’s final trial results 
within the FINESCE project. 
 
The scope of the trial has been to execute Demand Side Management and Demand Side 
Response tests with external buildings in, Malmö, Sweden. The solution should be capable of 
testing activities of an integrated approach of energy carriers in order to demonstrate Demand 
Side Management and Demand Side Response tests based on either price or energy mix (CO2) 
for both heat and electrical loads. 
 
The desired outcomes are stated here below. 
 

 Understanding of how Future Internet technologies can contribute to an efficient and 
robust Demand Side Management system 

 Proof of concept and evaluation on solution which architecture is based on distributed 
energy management capability and centralized portfolio management capability 

 Proof of concept regarding cost optimization on price signals for heat and electricity 
based on different business model(s) 

 Increased knowledge on future potential for Demand Side Management and Demand 
Side Response as well as ideas on customer’s potential to act as balancing power 

 Evaluation of the thermal load shifting potential by different heating systems, e.g. under 
floor heating and radiators, while leveraging the building’s thermal inertia 

 Definition of a scale-up strategy for the trial, e.g. ability for other towns, regions or 
business sectors to use the results and functionality 

 
All of the desired outcomes for WP1 have been met and documented in different FINESCE 
deliverables. 
 
The deliverable is split into the following results sections: usage of Generic Enablers and 
FIWARE, Energy optimization, Simulations, and Other. 
 
Different results and conclusions have also been reported in previous deliverables. See for 
example the below deliverables for more information. 
 

 WP1 Analysis of Generic and Specific Enablers Integration (D1.4) 

 WP1 Trial Demonstration (D1.5) 

 WP1 Innovation and Business Report (D1.8) 

1.1 Trial architecture 

The below figure illustrates the architecture developed in WP1. 
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Figure 1-1 WP1 trial architecture 
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2. Trial results on usage of Generic Enablers and FIWARE 

2.1 XLAB’s view on the FIWARE platform and Future Internet capabilities 

The FIWARE proved highly beneficial in the trial development both in terms of the offered 
infrastructure and the GE’s readily available for the integration. From the perspective of XLAB 
as a SME in the consortium, this means less time and effort spent on technology, and more 
attention given to the actual content of the bigger Smart Energy projects. 
 
Of the GE’s available and integrated into the trial, we found the greatest use in the ones from 
the Security chapter of the FIWARE Catalogue. The GE Identity Manager KeyRock has been 
serving as the Single Sign-On solution for the visualisation applications. It also serves as the go-
to place for authenticating users and machine clients, who access the data handling and serving 
layer of the visualisation services in the trial. To implement the authorization functionality, we 
use the GE Authorization PDP AuthZForce, and to complement the two services, we also use 
the GE PEP Proxy Wilma. By deploying the services in a topology where the PEP Proxy serves 
as a gate keeper to the data service, we have a stack where data is protected from 
unauthorized accesses. 
 
The benefit of the FIWARE’s whole package of the two of the three As (Authentication, 
Authorization, Accounting) is that the trials and their applications can take advantage of the 
accounts of the stakeholders already registered in the FIWARE. This means that both the 
Phase II and the Phase III projects’ participants can use a unified and safe approach in 
presenting their user credentials. At the same time, the GEs employ open standards (e.g., the 
XACML for the Authorization PDP), so using FIWARE does not represent any vendor lock-in.  
 
Thanks to this open design, the solutions currently working in FIWARE could be adapted to 
work with other solutions mandated by the potential customers (e.g., a utility or a DSO) due to 
their strict administrative policies. Of course this customisation requires a minor amount of effort 
and some overhead. 

2.2 Lessons learned with FIWARE and GE’s 

Details concerning lessons learned with FIWARE and GE’s are documented in the below 
deliverables. Those deliverables include example of concrete feedback given to GE developers 
as well as a comparison between the Generic Enabler BigData Analysis (Cosmos) and a similar 
service (Hortonworks). 
 

 WP1 Mid-term Analysis of Generic and Specific Enabler Integration and Trial Impact 
(D1.3.2) 

 WP1 Analysis of Generic and Specific Enablers Integration (D1.4) 
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3. Trial results on energy optimization 

The developed trial infrastructure has proven to be a very flexible system with regard to 
handling different use cases and business models. One of the infrastructure’s many strengths is 
the ability to deliver benefits both on a local level, optimization in the building, and at the same 
time on a global level, system optimization. 
 
The infrastructure can handle all types of energy carriers, and we have been controlling 
electrical loads, district heating loads and district cooling loads. 
 
Currently five buildings are connected to the infrastructure. All originally identified use cases 
have been implemented, investigated and proven. These use cases include amongst others 
tests for load curtailment and load shifting. Even additional use cases have been added. New 
use cases are found as spinoff when developing and investigating, resulting in new future 
opportunities. See previous deliverables (D1.1 and D1.2) for more information concerning 
energy optimization. 
 
Further, some of the use cases have been found to have a commercial potential and plans are 
made to progress towards a commercial phase, post the FINESCE project. This concerns for 
example system optimization of district heating and district cooling. As for the previously 
reported district cooling case in the Western harbour, Malmö, the current status is that a rollout 
of the WP1 infrastructure to circa 25 buildings in 2016-2017 (i.e. post the FINESCE project) 
would have a positive NPV compared to a “conventional” case. The “conventional” case 
includes investments in additional production capacity (MW). This rather expensive production 
capacity would not be required to the very same extend thanks to the load curtailment use case. 

3.1 Results 

The infrastructure is capable to shift load according to defined use cases. The potential for 
shifting loads without significant impact on the customer’s comfort has been shown to be bigger 
than initially expected. All this is of course very positive as it indicates good opportunities for 
leveraging the loads’ flexibility. 
 
Therefore E.ON is now further exploring how the flexibility can be used to enable system 
optimization of district heating and district cooling grids. For example, provided that desired 
flexibility is available, that could enable avoidance of firing up peak production units which 
usually have higher operational costs and CO2 emissions. Thus, rolling out the infrastructure to 
the wider Malmö (here 5 buildings would not be enough, 50+ are required) could enable 
benefits to the whole City of Malmö. 
 
In order to quantify the potential, different analyses and simulations have been activated, in 
addition to planned FINESCE activities, to identify a potential return of investment given the 
costs to set up a commercial operation of the infrastructure and rollout of required technology 
(compared to today’s pilot operation with 5 buildings). These promising aspects would not have 
been this far without E.ON’s involvement in the FINESCE project. 

3.1.1 Dynamic district heating prices 

E.ON has been testing so called dynamic district heating prices together with 3 of the buildings 
in the WP1 trial. The prices varied on hourly basis. The test is referring optimization of heating 
for the complete building, i.e. on building level, not necessarily individual apartment level. 
 
There are many different possibilities to build dynamic price models for district heating with 
different advantages and drawbacks. The selected price model for this project was based on the 
Nord Pool electricity prices. 
 
Moreover, Nord Pool is the Nordic electricity market, hence not at all district heating market. 
However, when it is cold outside, the electricity prices increase. The same concerns district 
heating. When it is cold outside, more district heating production is required. Hence there is a 
correlation between electricity prices and district heating production. Still there is not at all a 
perfect correlation. This correlation is relevant over hours and days, however it is not as strong 
over longer periods of time, for example over months and years. 
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The tests of using dynamic district heating prices based on Nord Pool electricity prices have 
been successful in general, but also resulted in a number of learnings for the future. 
 
As the building’s heating system should not be turned off completely (to avoid physical stress in 
the building), a 50% maximum curtailment capacity was set. It means that when the BMS 
system in the building requires 60kW of heat power at a given moment, for example, the WP1 
optimization algorithm reduced the heat consumption to 30kW during the that period. This 50% 
maximum curtailment cap limits as well the capacity of monetizing the price differences within 
the day by half. 
 
The dynamic district heating price based on Nord Pool has periods with very low variations, and 
periods with higher variations. See below figure. 

 

Figure 3-1 Prices over 2014-2015 

It can be seen that there are periods of high variations and periods with low variations. Periods 
with high variations generally have peak price changes close to double the price of the lowest 
price of the day. 
 
The uncertainty of these factors makes it very difficult to state an overall saving potential for the 
customer. However using the chosen price model, for a selected period of time, and estimated 
flexibility, calculations indicates savings around 5% (compared to doing no optimization at all).  
The figures of 5% derive from a so called baselining process. Calculating the baseline is very 
complex. It is very difficult – if not impossible – to know for certain how the load behaviour would 
have looked like without optimization. 
 
Moreover, it is also important to be aware of that some days have a very flat price profile, which 
indicates a low possible to lower the costs. On the other hand some days have a more extreme 
variation which indicates a high possible to lower the costs. That is one of the reasons why it is 
impossible to define an exact percentage concerning the reduction potential. 
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4. Trial results on simulations 

4.1 Simulation 

4.1.1 Introduction 

In district heating grids, the conventional operation of heating plants is demand oriented. As a 
result, peak units that are generally characterized by a high cost and CO2-footprint, and specific 
generation costs are operated to ensure the security of supply in periods of large demand. 
 
Residential and commercial buildings account for up to 38% of the total end energy 
consumption worldwide and hence provide a large potential for energy savings and Demand 
Side Management (DSM) [1]. The embedded thermal mass of a building may be actively used 
as structural thermal storage capacity. Therefore intelligent control strategies can be used to 
optimize the use of this capacity by taking into account the thermal characteristics of the 
building. This is realized by a dynamic control of the indoor temperature to flatten the buildings’ 
heat demand profile maintaining or even improving thermal comfort. Such dynamic control 
strategy would preheat the building and activate the storage capacity by increasing the indoor 
temperature setpoint in times of low demand that correspond to low CO2 emissions.  
 
Alternatively, the heating setpoint could be lowered in high load periods which induce the 
operation of peak units that result in high CO2 emissions. Consequently the thermal mass 
releases the stored energy thereby reducing the energy demand allowing for avoiding CO2 
emissions. 
 
The most crucial barrier of estimating the building inertia is the lack of knowledge about the 
building physical properties. A detailed investigation of these factors requires extensive 
monitoring and analysis which is, in practice, applicable only on a small fraction of the total 
existing building stock. The aim of this work is to develop a method for the identification of the 
building thermal flexibility, described by the parameters of a simplified building model with a 
clear physical interpretation. The parameter identification process involves optimization of the 
model fitting using a few input variables measured at the building and very basic information 
about the building. The determined thermal flexibility will describe the capability of the building 
to act as short term heat storage and will therefore represent its load shifting potential for district 
heating networks. The development of the method aims its applicability on different building 
types without significant adjustments. 

4.1.2 Approach 

This work is based on a systematic approach that will allow for a straightforward future 
application of the method on other buildings. The below figure gives an overview of the applied 
approach. First the input data measured at the building is filtered and completed in order to be 
usable for the model fitting. The model parameters are initialized and constrained based on 
basic building information combined with specifications from norms and standards. The 
estimation of the model parameters is performed by fitting the simulation output to the available 
measurement data. An optimization algorithm is used for the parameter approximation based on 
an interior point optimization method for solving linear and non-linear convex optimization 
problems. 
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Figure 4-1 Flow chart of the building modeling and input data estimation 

4.1.3 Models 

The estimation of the model parameters through optimization of the model fitting is tested for 
different model structures. The six models tested in the study include different building 
components and vary regarding their complexity and accuracy to represent the real physical 
interrelationships in a building. The below table gives an overview of the presented building 
models and the physical effects they regard. The test parameter estimation approach on the 
different building models will reveal which ones are simple enough to be parametrised through 
fitting of measured data but complex enough to reproduce the building thermal response 
accurate enough for the use in DSM measures. 
 

Table 4-1 Overview on the building models considered in this work 
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4.1.4 Case study 

The presented approach was tested on a residential apartment building in Malmö, Sweden 
connected to a district heating grid operated by E.ON. The observed residential building 
includes 53 apartments and a total floor area of 4740 m². As shown in the below figure, the 
building integrates three blocks - two consisting of 5 floors and a third block with an additional 
penthouse floor. The construction year 2013 suggests a good insulated building envelope. 
 

 

Figure 4-2 of the test building in Malmö, Sweden 

The input data for the model simulation is presented by times series of measurements extracted 
from the building management system (BMS) and the thermostat system of the test building for 
the period between end of January and beginning of March 2014. The collected data includes 
hourly values of the indoor temperature (average value for the building), the heat consumption 
and the outdoor temperature. Additionally, values for the solar irradiation on horizontal surface 
for the area of Malmö could be obtained by the Swedish Meteorological and Hydrological 
Institute. 

4.1.5 Results 

The parameters of the simplified building models were identified using the monitored data of 14 
consecutive days from the 14th to the 28th of February. Subsequently, the models were 
simulated for the whole available period from the 14th of February to the 3rd of March. The most 
suitable building model is identified by comparing the simulation output accuracy and the 
parameter plausibility of the different models.  
 

a. Quantitative analysis 
The quantitative accuracy of the model regarding their ability to represent the indoor 
temperature fluctuations are evaluated based on the root mean squared error (RMSE) of the 
residuals between the simulated temperature and the measured indoor temperature of the 
building. The results show that simulation error decreases slightly with the rising complexity of 
the models. Still, the absolute differences between the RMSE of every two models does not 
exceed 0,03 K - an insignificant value considering the sensitivity of the temperature sensors in 
the rooms. 
 

b. Qualitative analysis 
Considering the similar RMSE values of the different models, the qualitative analysis of the 
temperature prediction presents a better way to evaluate the accuracy of the model simulations. 
The models I-E-A, I-H-E and I-H-E-A give a better representation of the building cooling rate in 
the night hours, even if the average absolute residuals to the measured temperature do not 
differ significantly. 
 

c. Plausibility of the estimated parameters 
The below figure gives an overview over the estimated model parameters regarding their 
physical plausibility. Most of the models have several parameter assessed to their boundary 
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values. Only the I-E-A-model provides a parameter set which is completely within the physically 
plausible range. 
 

 

Figure 4-3 Physical plausibility of the estimated model parameters 

In conclusion, the only building model that presents a whole parameter set with reasonable 
physical interpretation and reproduces accurately the indoor temperature dynamics is the I-E-A-
model. This model is used further for the estimation of the thermal flexibility of the test building. 

4.1.6 I-E-A-model 

The below figure presents the model structure of the I-E-A model. All interior and exterior 
building components are summarized in one respective capacity. Additionally the indoor air is 
observed as massless temperature node. The model distinguishes between infiltration heat 
losses, connecting the indoor air directly to the environment, and transformation heat losses, 
which transfer the heat first to the exterior and then to the ambience. 
 

 

 Figure 4-4 Simplified building model: I-E-A 

As presented in the below figure, the model fitting gives a good match of simulated and 
measured temperatures. It must be noted that the recorded temperature drops are reproduced 
by the model simulation in a very accurate way. 
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Figure 4-5 Simulation results of the I-E-A model 

4.1.7 Thermal flexibility estimation 

District heating network operators need information about the thermal flexibility of the heat 
consumers in order to plan demand side management measures. Therefore, the practical 
application of the developed method involves the derivation of the building thermal flexibility 
from the estimated model parameters. In this sense, the potential of a building for demand side 
management is defined by its thermal flexibility. 
 
The below figure presents an estimation of the thermal flexibility of the case study building as a 
function of the permitted indoor temperature decrease and the heat load reduction performed 
using the I-E-A-model. 
 

 

Figure 4-6 Maximum time of building wall mass heat storage discharge for preset indoor 
temperature drops 

Each curve corresponds to the allowed temperature drop in the building. High offsets of the 
building heating reduce the influence of the various indoor temperature drop constraints on the 
maximum cool down times. For the observed building, the heat stored in the building mass is 
sufficient to keep the indoor temperature in a comfortable range (less than 1 K temperature 
drop) for 20 hours with a heating reduction of 70%. These results are observed for an average 
outdoor temperature of 3°C, present at the period of the simulated heat reduction.  
 
A step test was performed by E.ON at the real building in Malmö to verify the calculated results. 
On the 12th of December at 1:00 am in the morning the heating system operation of the test 
building was reduced by 30% for 14 hours. As a result, the average indoor temperature of the 
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building decreased by less than 0,2 K. This confirms the high thermal flexibility of the building 
assessed by the building model simulation. 
 

4.1.8 Conclusion 

This work has presented a method for assessing the building thermal characteristics based on 
collected measurement data and basic building information. For this purpose, the building was 
represented through a lumped capacity model using a grey-box modelling approach. After a 
process of filtering and completion of the input data, an optimization algorithm was applied to fit 
the simplified building model to the available measurement data. The initial parameter values 
and the optimization constraints were derived from norm and standard specifications as well as 
basic principles of the building physics and were defined to be generally valid for different 
building types. The model parameters estimated by the optimization algorithm allow for the 
direct derivation of the building thermal flexibility, the building time constant and therewith the 
potential of the building for Demand Side Management measures. The wide applicability of the 
building model structure and the parameter constraints for the optimization, developed within 
the method, allows for an implementation on different buildings types. The qualitative analysis of 
the model temperature prediction and the evaluation of the estimated model parameters 
revealed that only the two capacity building model with an additional consideration of the indoor 
air as a massless node (I-E-A-model) combines an accurate qualitative reproduction of the 
indoor temperature fluctuations and a clear physical interpretation of the estimated parameters. 
 
An evaluation of the building thermal flexibility using the I-E-A-model determined that the 
building can maintain a comfortable indoor temperature (less than 1 K temperature decrease) 
over 20 hours for an average outdoor temperature of 3°C and a heating reduction of 70%. The 
high thermal flexibility of the building was confirmed by step tests performed at the real building. 

4.2 Modelling a CO2-steering signal for Demand Side Management in 
district heating grids 

4.2.1 Introduction 

Usually the operation of combined heat and power plants for district heating grids follows the 
demand. Peak units are used to cover the demand in times of higher demand periods. In 
general those units have higher CO2 emissions and in particular are most cost intensive. 
Hence, Demand Side Management or Demand Side Response concepts for district heating 
grids can be sufficient solution for an optimized operation of the heating plants. Firing up the 
peak units could be avoided.  
 
Such concepts could make use of the thermal flexibility on the building side given by the thermal 
inertia of the building or thermal water storages. The flexibility could shift the demand from times 
with high CO2 emissions into times of lower CO2 emission to support a more sustainable 
operation of the heating grid.  
 
This work derives a CO2 steering signal based on generation data from the district heating 
plants in Malmö of the years 2011 and 2012. The CO2 steering signal is the same as the CO2 
emissions prediction. This data plus hourly outdoor temperature and the corresponding CO2 
emission factor per power plant is provided by the district heating grid department. The derived 
signal is applied to the customers to give incentives for shifting demand.  
 
Both an artificial neural network (ANN) and a regression based method are applied to the data 
for modelling the CO2 signal.  

4.2.2 Modeling 

First, the provided data is used to calculate the CO2 emissions for all heating plants and the 
total amount in every hour of the years 2011 and 2012 according to the outdoor temperature. 
We filter the data according to the outdoor temperature with a resolution of 0,5°C and the 
corresponding hour of the day. This results in information of the CO2 emissions for each hour of 
a characteristic day depending on a certain outdoor temperature. For taking into account 
inaccurate information an exponential robust fitting is applied to each hour. This results in 24 
different fitting curves offering the opportunity to calculate the emissions at a certain hour 
depending on the temperature during this hour h.  
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𝐸CO2(ℎ)=𝑎(ℎ)∙e𝑏∙𝑇out(ℎ)+
𝑐(ℎ)    Eq. 1 

 
Eq. 1 applied to each hour of a day is then used to derive a 24hour CO2-emission forecast 
implied that the outdoor temperature forecast is available. Due to the fact that if the daily 
outdoor temperature is higher than 15°C there is no heating required within the building we set 
the CO2 emissions to zero during those time periods. An example for the robust fitting of one 
hour in the one-day model is pictured in the below figure.  
 
For covering the disadvantage that those days can appear also in winter and transition periods, 
we extend the model to a three-season model. This represents, using the VDI 4655, the 
different weather periods, such as winter, transition and summer period. Studies showed that a 
linear fitting approach, given in equation 2 fits best here.  
 

𝐸CO2(𝑑s,ℎ)=𝑎(𝑑s,h)∙𝑇out(𝑑s,ℎ)+𝑐(𝑑s,h)   Eq. 2 
 

 

 Figure 4-7 Example of the robust fitting approach for hour 5 using the one-
representative day model 

The below figure shows an overview on the work flow for the modelling of the three-day 
representative model. The distinction between these periods is based on the average day 
temperature. If the average temperature is less than 5°C it is considered to be a winter day, 
whereas an average temperature higher than 15°C refers to summer period. Other average 
temperatures lead to transition period. 
 

Temperature Forecast of 
Outdoor Temperature 

For next 24 hours 

Calculation of 
average day 
temperature 

Evaluation of 
period:
-Winter

-Transition
-Summer 

Calculate CO2-
Signal 

 

Figure 4-8 Work Flow of CO2-Signal Modelling 

4.2.3 Results  

For the evaluation of the model both the one representative and the three-seasonal model are 
analysed. The fitting results for the measurements of two years data are considered. In addition, 
we also apply a nonlinear autoregressive network with exogenous inputs (NARX) artificial 
neuronal network model. It contains 20 neurons and 2 layers. The data of 2011 and 2012 is 
used to forecast the CO2 emissions of the year 2013.  
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Figure 4-9 Comparison of results taken from 

As evaluation criteria we mainly focus on the sum of squared error (SSE). The analysis shows 
that the ANN model has the biggest SSE and is hence neglected for further comparison. 
Looking into the two other models shows that the three-seasonal model has a slightly smaller 
SSE than the one-day model and hence gives a better performance. In general both models 
show that the dynamic behaviour of the CO2-emission profile can be captured by both 
approaches. The below table provides an overview on the SSE per model. In general a lower 
SSE is related to a higher performance. 
 

Table 4-2 Overview on SSE per Model Approach 

Model Approach  Sum of Squared Error (SSE) * 10
5 

Artificial Neuronal Network 5.00 

One-day Approach  3.98 

Three-day Approach (VDI 4655) 3.75 

4.2.4 Conclusion 

This analysis showed that the model trained with historic production from two years can be used 
to evaluate a CO2 signal. This signal is able to be used for DSM concepts in district heating 
grids to give incentives to move consumption into times of lower CO2 emissions. In general the 
three-seasonal model according to VDI 4655 should be preferred due to a lower SSE meaning 
a better performance. However, further training data is desired to reduce the SSE.  
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5. Other Trial Results 

Results linked to WP1 customer engagement and partner interaction was presented in 
deliverable WP1 Trial Demonstration (D1.5).  

5.1 Visualization 

The Demand Side Management trial involves the tenants of the buildings and the staff working 
in the commercial buildings. The amount and the dynamics of heating directly affects the 
comfort levels of the people. At the same time, the consumption of energy is associated with 
cost, which the consumers wish to minimise. One of the better ways of controlling the energy 
consumption is by monitoring it in a Smart Energy graphical application.  
 
In FINESCE, XLAB used the FINESCE Presentation Layer (FPL), developed in the WP3, to 
create an application, which visualises the energy consumption of the smart building. The 
architecture of the FPL is presented in a greater detail in D3.7, but in short, it is composed of the 
Data Broker for collecting and enriching the Smart Energy data, a visualisation framework and 
visualisation widgets. Using these components, end-user applications are created. The aim in 
the design of these applications was to present the data to the users with a pleasing 
appearance, but at the same time also to offer crucial visual information on the current and past 
energy consumption. 
 
The application is suitable for a number of use cases. Principally it is aimed at the owners of the 
building, and the operators of the heating and electricity service, such as E.ON. However, it is 
also possible to extend its use to include individual tenants in the use cases where the energy 
consumption meters are installed at the individual consumer’s apartment.  
 
A single installation of the application supports all three use cases. The users will see the data 
and functionality suitable for their assigned role. The role system also enables various 
granularities of the data accessible to the users, protecting the data from the unauthorised views 
and operations.  
 
The design of the application follows the principles of the responsive interfaces. This assures 
that the visualisation is suitable for a wide range of displays, starting at the largest panels used 
in the operating centre to the small screens of the smart phones. The choice of the underlying 
technology also enables portability of the application, and assures compatibility with the great 
majority of modern and popular web browsers. 
 
The FPL is also designed to respond quickly to the requests, making sure that the users do not 
perceive the delay between the requesting a view and receiving it on screen. This includes the 
views, which display the Smart Energy data on a wider time scale. The quick responses are 
possible because FPL’s Data Broker aggregates the data at various levels and stores the 
aggregations to be quickly displayed. 

5.1.1 Energy Service Providers 

The first use case of the Smart Building application assumes that the energy providers or the 
DSO’s need to monitor the ongoing energy consumption by their customers. For these users, 
the administrator must have created an account, and has also created the users in the 
application, assigning then the role of the providers. When a user with this role logs into the 
application, they first receive the Overview view. The below figure shows an example of the 
view, which contains the following elements: 

 the latest readings of the aggregated electricity and heat consumption, 

 a chart showing the history of the energy consumption readings starting at the 
beginning of the day, both for the heating and the electricity as the energy source, 

 the history of the outside temperature readings from the beginning of the day, 

 the history of the energy prices, both for electricity and heating. 
 
The purpose of this view is for the operator to have it always open and visible, thus being able 
to perform continuous monitoring of the network status. By showing the live data and the chart 
that periodically updates to display the history between the beginning of the current day and the 
current time, it enables a view that requires no input parameters. 
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Figure 5-1 The Smart Building application’s Overview displays the data relevant for 
continuous monitoring of the Smart Factory’s energy consumption 

To access a view where the user has much more control over the range of the data shown, the 
user can switch to the Monitor view. There, a provider user obtains a list of all the meters 
registered in the system, with each meter placed in a building and a region. The user can then 
select from this list a region, a house or a meter, and the widgets on the rest of the view will 
show the data applicable for the selection. Additionally, the user can adjust a start time and an 
end time of the range of data used in this view. The data shown on the visualisation widgets will 
therefore represent a relevant aggregation of the data if the user selects a building or a region. . 
The Figure 5-2 shows an example of this view. 
 
The data display at the Monitoring view includes the following: 

 a chart showing the history of the heating and the electricity power consumption 

 an aggregation of the heating and electricity energy consumed in the selected time 
range 

 a chart showing the history of cost of the energy consumed 
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 a chart showing the history of prices of the energy as it has been readjusted in time 

 a chart showing the history of the outside temperature 
 

 

Figure 5-2 The Smart Building application’s Monitor view for the energy provider’s 
operator shows data at various levels of aggregation 

5.1.2 Customers and consumers 

The second major role in the application represents the recipients of the energy, who are the 
direct customers of the energy provider (e.g., the building owners) or the end consumers (e.g., 
tenants in the house or the building). We assume that they purchase the energy and pay at a 
monthly interval for the energy metered and consumed in the previous month. The prices are 
set by the market and possibly the provider, and they can be flat or can dynamically change 
throughout the day. The consumer’s interest in the metered data is therefore the history of the 
energy consumption and the cost accumulated so far. 
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Following this rationale, the users upon logging in receive the Overview view (Figure 5-3), 
which visually summarises the following: 

 live power currently consumed according to the most recent reading 

 a chart showing the electricity and heating power consumption history since the 
beginning of this month (or since the start of the accounting month) 

 accumulation of the energy consumed since the start of the month 

 the cost of the energy consumed 

 the grade of the energy consumption efficiency in this month as compared to the 
metered consumption in the previous month 

 a chart showing the outside temperature since the beginning of the month 

 the current weather 
 

 

Figure 5-3 The Smart Building application’s Overview tab for the customers and 
consumers displays the data relevant for monitoring the consumption in the current  

The consumers may also switch to the Monitor view for the ability to select a custom time range 
for the visualised data. The Figure 5-4 shows an example, which consists of the following 
widgets: 

 a chart showing the history of the heating and electricity power consumed during the 
selected time 

 a chart showing the history of the cost of the energy consumed in the selected time 
range 

 a chart showing the history of the outside temperature in the selected time range, 

 a weather history 
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Figure 5-4 The Monitor view for a consumer user shows the data related to a single 
building or apartment 

5.1.3 Visualization security 

The heat consumption data of a building are considered sensitive data. When produced by 
tenants, the data is private, because it could be used to discern a deeper insight into the habits 
of the consumers. For the whole buildings, they could represent a business secret. In either 
case, we wanted to build into the application the ability for the users to only access the data 
when they are logged in. Therefore we integrated with the application the use of the GE Identity 
Manager KeyRock. In practice this means that the users need to provide their FIWARE 
credentials (user name and password). The application supports Single-Sign-On protocols such 
as OAuth2, therefore the user’s password goes to the Identity Manager directly, never to be 
intercepted by the application. 
 
The application keeps the access policies encoded in an XACML format, compatible with the 
GE Authorization PDP AuthZForce. The GE PEP Proxy Wilma serves as a gatekeeper for the 
Data Broker service, permitting access only to the requests, which come from authorized and 
properly logged-in users, and which the AuthZForce grants the access to. The access policies 
base the conditions to grant access on the user’s known attributes, which include the user’s 
assigned role, the account (e.g., a household or a company) that the user belongs to, and a list 
of the meters owned or rented by the user. To support this functionality, we complemented the 
KeyRock’s features by implementing our own Attribute Manager. 
 
In the trial, the application’s deployment relied on the FIWARE Lab’s instances of KeyRock and 
AuthZForce. Thanks to the two GEs’ source availability and well-written documentation, we are 
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also able to deploy and use our own instances of the GEs. Additionally, our Attribute Manager 
can also be used in other contexts and applications, including other FINESCE use cases such 
as the ones from WP3. 
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6. Conclusion 

The deliverable includes extended results for the following results sections: usage of Generic 
Enablers and FIWARE, Energy optimization, Simulations, and Other. 
 
WP1 has a gained a positive experience with FIWARE, mainly linked to data processing and 
security chapters. 
 
The developed trial infrastructure has been to proven to be a very flexible system with regard to 
handling different use cases and business models. One of the infrastructure’s many strengths is 
the ability to deliver benefits both on a local level, optimization in the building, and at the same 
time on a global level, system optimization. 
 
Concerning the CO2 model simulations, the analysis showed that the model trained with historic 
production from two years can be used to evaluate a CO2 signal. This signal is able to be used 
for DSM concepts in district heating grids to give incentives to move consumption into times of 
lower CO2 emissions. In general the three-seasonal model according to VDI 4655 should be 
preferred due to a lower SSE meaning a better performance. However, further training data is 
desired to reduce the SSE. 
 
Lastly, all of the desired outcomes for WP1 (mentioned in the Introduction) have been met and 
documented in different deliverables. 
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8. List of Abbreviations 

 
B2B Business to Business 
BMS Building Management System 
CAPEX CAPital EXpenditure 
CENELEC European Committee for Electro technical Standardization 
CEP Complex Event Processing  
COTS Commercial off-the-shelf 
CPMS Charge Point Management System 
CSA Cloud Security Alliance 
DER Distributed Energy Resources 
DMS  Distribution Management System 
DMTF Distributed Management Taskforce 
DSE Domain Specific Enabler 
EAC Exploitation Activities Coordinator 
EMS Energy Management System 
ERP Enterprise Resource Planning 
ESB Electricity Supply Board  
ESCO Energy Service Companies 
ESO European Standardisation Organisations 
ETP European Technology Platform 
ETSI European Telecommunications Standards Institute 
GE Generic Enabler 
HEMS  Home Energy Management System 
HV High Voltage 
I2ND Interfaces to the Network and Devices 
ICT Information and Communication Technology 
IEC International Electro-technical Commission 
IoT Internet of Things 
KPI Key Performance Indicator 
LV Low Voltage 
M2M Machine to Machine 
MPLS Multiprotocol Label Switching 
MV Medium Voltage 
NIST National Institute of Standards and Technology 
O&M Operations and maintenance  
OPEX OPerational EXpenditure 
PM Project Manager 
PMT Project Management Team 
PPP Public Private Partnership 
QEG Quality Evaluation Group 
S3C Service Capacity; Capability; Connectivity 
SCADA Supervisory Control and Data Acquisition 
SDH Synchronous Digital Hierarchy 
SDN Software defined Networks 
SDOs Standards Development Organisations 
SET Strategic Energy Technology 
SET Strategic Energy Technology 
SG-CG Smart Grid Coordination Group 
SGSG Smart Grid Stakeholders Group 
SME Small & Medium Enterprise 
SoA State of the Art 
SON Self Organizing Network 
SS Secondary Substation 
TL Task Leader 
TM Technical Manager 
VPP Virtual Power Plant 
WP Work Package 
WPL Work Package Leader 
 


